Biofilm behavior of Tannerella forsythia strains and S-layer glycosylation mutants
نویسندگان
چکیده
The periodontopathogen Tannerella forsythia has a characteristic cell surface (S-) layer modified with a unique O-glycan. This structure was analyzed for its role in biofilm formation employing an in vitro multispecies biofilm model, into which different T. forsythia strains and mutants with a modified cell surface composition were incorporated together with nine other oral species. The influence of the glycosylated T. forsythia S-layer on the bacterial composition of the biofilms was analyzed quantitatively using quantitative real-time PCR as well as qualitatively by fluorescence in situ hybridization and confocal laser scanning microscopy. It was evident that while changes of the T. forsythia cell surface did not affect the quantitative composition of the multispecies consortium, with the exception of Campylobacter rectus cell numbers, the localization of T. forsythia within the biofilm and its aggregation with Porphyromonas gingivalis were changed. Thus, the glycosylated T. forsythia S-layer might have relevance for positioning of this species within the biofilm and influence its co-localization with P. gingivalis and the prevalence of C. rectus. This might further pinpoint a pivotal role of T. forsythia cell surface structures in the virulence of this species when interacting with host tissues and immune system, from within or beyond the biofilm. CONTACT Susanne Bloch [email protected] JOURNAL OF ORAL MICROBIOLOGY, 2017 SUPPLEMENT, 1325190 https://doi.org/10.1080/20002297.2017.1325190 © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
منابع مشابه
Lack of a surface layer in Tannerella forsythia mutants deficient in the type IX secretion system
Tannerella forsythia, a Gram-negative anaerobic bacterium, is an important pathogen in periodontal disease. This bacterium possesses genes encoding all known components of the type IX secretion system (T9SS). T. forsythia mutants deficient in genes orthologous to the T9SS-encoding genes porK, porT and sov were constructed. All porK, porT and sov single mutants lacked the surface layer (S-layer)...
متن کاملBehavior of two Tannerella forsythia strains and their cell surface mutants in multispecies oral biofilms
As a member of subgingival multispecies biofilms, Tannerella forsythia is commonly associated with periodontitis. The bacterium has a characteristic cell surface (S-) layer modified with a unique O-glycan. Both the S-layer and the O-glycan were analyzed in this study for their role in biofilm formation by employing an in vitro multispecies biofilm model mimicking the situation in the oral cavit...
متن کاملGlycobiology Aspects of the Periodontal Pathogen Tannerella forsythia
Glycobiology is important for the periodontal pathogen Tannerella forsythia, affecting the bacterium's cellular integrity, its life-style, and virulence potential. The bacterium possesses a unique Gram-negative cell envelope with a glycosylated surface (S-) layer as outermost decoration that is proposed to be anchored via a rough lipopolysaccharide. The S-layer glycan has the structure 4‑MeO-b-...
متن کاملDentilisin involvement in coaggregation between Treponema denticola and Tannerella forsythia.
Periodontitis arises from a biofilm consisting of gram-negative anaerobic rods and spirochetes. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, termed the Red complex, have been co-isolated with high frequency from chronic periodontitis lesions, and these microorganisms are thought to be major pathogens of the disease. Coaggregation is an important strategy in the colon...
متن کاملTannerella forsythia strains display different cell-surface nonulosonic acids: biosynthetic pathway characterization and first insight into biological implications
Tannerella forsythia is an anaerobic, Gram-negative periodontal pathogen. A unique O-linked oligosaccharide decorates the bacterium's cell surface proteins and was shown to modulate the host immune response. In our study, we investigated the biosynthesis of the nonulosonic acid (NulO) present at the terminal position of this glycan. A bioinformatic analysis of T. forsythia genomes revealed a ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017